Monthly Archives: July 2016


Bash: Extract data from files both filtering filename, the path and doing internal processing

The following code will find all files that match the pattern 2016_*_*.log (all the log files for the year 2016).

To avoid finding log files from other services than the Web API service, we filter only the files that their path contains the folder webapi. Specifically, we used "/ServerLogs/*/webapi/*" with the following command to match all files that are under the folder /ServerLogs/ and somewhere in the path there is another folder named webapi, we do that to match files that are like /ServerLogs/Production/01/webapi/* only. The way we coded our regular expression, it will not match if there is a folder called webapi directly under the /ServerLogs/ (e.g. /ServerLogs/webapi/*).

For each result, we execute an awk script that will split the lines using the comma (FS=",";) character, then check if the line contains exactly 4 tokens (if (NF == 4) {). Later, we get the 4th token and check if it contains the substring "MASTER=" (if (match($4,"MASTER=")) {), if it does contain it we split it using the space character and assign the result to the variable named tokens. From tokens, we get the first token and use substr to remove the first character. Finally, we use the formatted result to create an array where the keys are the values we just created and it is used as a hashmap to keep record of all unique strings. In the end clause, we print all the elements of our hash map.

Finally, we sort all the results from all the awk executions and remove duplicates using sort --unique.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
find /ServerLogs/ \
    -iname "2016_*_*.log" \
    -ipath "/ServerLogs/*/webapi/*" \
    -exec awk '
        BEGIN {
            FS=",";
        }
        {
            if (NF == 4) {
                if (match($4,"MASTER=")) {
                    split($4, tokens, " ");
                    instances[substr(tokens[1], 2)];
                }
            }
        }
        END {
            for (element in instances) {
                print element;
            }
        }
    ' \
    '{}' \; | sort --unique;

Following is the same code in one line.

1
find /ServerLogs/ -iname "2016_*_*.log" -ipath "/ServerLogs/*/webapi/*" -exec awk 'BEGIN {FS=",";} {if (NF == 4) {if (match($4,"MASTER=")){split($4, tokens, " "); instances[substr(tokens[1], 2)];}}} END {for (element in instances) {print element;}}' '{}' \; | sort --unique

Another way

Another way to do similar functionality would be the following

1
2
3
4
5
6
7
find /ServerLogs/ \
    -iname "2016_*_*.log" \
    -ipath "/ServerLogs/*/webapi/*" \
    -exec sh -c '
        grep "MASTER=" -s "$0" | awk "BEGIN {FS=\",\";} NF==4" | cut -d "," -f4 | cut -c 3- | cut -d " " -f1 | sort --unique
    ' \
    '{}' \; | sort --unique;

What we changed is the -exec part. Instead of calling a awk script, we create a new sub-shell using sh -c, then we define the source to be executed inside the single codes and we pass as the first parameter of the shell the filename that matched.

Inside the shell, we find all lines that contain the string MASTER= using the grep command. Later we filter out all lines that do not have four columns when we tokenize using the comma character using awk. Then, we get the 4th column using cut and delimiter the comma. We remove the first two characters of the input string using cut -c 3- and later we get only the first column by reusing cut and changing the delimiter to be the space character. With those results we perform a sort that eliminates duplicates and we pass the results to the parent process to perform other operations.

Following is the same code in one line

1
find /ServerLogs/ -iname "2016_*_*.log" -ipath "/ServerLogs/*/webapi/*" -exec sh -c 'grep "MASTER=" -s "$0" | awk "BEGIN {FS=\",\";} NF==4" | cut -d "," -f4 | cut -c 3- | cut -d " " -f1 | sort --unique' '{}' \; | sort --unique;

An Introduction to Elm Series: Solution to ‘Binary Tree’ example supplementary module ‘Queue’

In http://elm-lang.org/examples/binary-tree, we are given a basic implementation of a binary tree and we are asked to extend it in various ways.

One of the tasks asked us to traverse the tree in various ways, in order to implement the Breadth First Traversal we needed a Queue.

Following is the code that we used for the Queue that is based on this package http://package.elm-lang.org/packages/martinsk/elm-datastructures/2.0.0/Queue.

The solution that this module was used in can be found here http://bytefreaks.net/programming-2/elm/an-introduction-to-elm-series-solution-to-binary-tree-example under the -- Breadth-first section.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
module Queue exposing (Queue, init, enqueue, dequeue, length, foldr, foldl, map, fromList, toList)
 
{-| This Module implements a simple LIFO queue
 
# Definition
@docs Queue
 
This is based on the
 
# Fundamentals
@docs init, enqueue, dequeue, length
 
# Usefull functions
@docs foldr, foldl, map, fromList, toList
 
-}
 
{-| a simple queue.
-}
type alias Queue a = (List a, List a)
 
{-| Creates an empty queue -}
 
init : Queue a
init = ([], [])
 
 
{-|Enqueue an element on a queue -}
enqueue :  a -> Queue a -> Queue a
enqueue a (inqueue, outqueue) =
  ((a::inqueue), outqueue)
 
{-|Dequeues an element of the end of a queue, and also returns thel
element -}
 
dequeue : Queue a -> (Maybe a, Queue a)
dequeue (inqueue,outqueue) =
  case outqueue of
    [] ->
      case inqueue of
        [] -> (Nothing,(inqueue, outqueue))
 
        (_::_) -> dequeue([], List.reverse inqueue)
 
    (x::xs) ->
      (Just x, (inqueue, xs))
 
 
{-| Get the length(number of elements) in the queue -}
length : Queue a -> Int
length (inqueue, outqueue) =
  let
    inqueue_len  = List.length inqueue
    outqueue_len = List.length outqueue
  in
    inqueue_len + outqueue_len
 
{-| Fold across a queue front ot back -}
 
foldr : ( a -> b -> b) -> b -> Queue a -> b
foldr f acc (inqueue, outqueue) =
  List.foldl f (List.foldr f acc inqueue) outqueue
 
{-| Fold across a queue back ot front -}
 
foldl : ( a -> b -> b) -> b -> Queue a -> b
foldl f acc (inqueue, outqueue) =
  List.foldr f (List.foldl f acc outqueue) inqueue
 
 
{-| maps from a queue of type a to a queue containing elements of type
b -}
 
map : (a -> b) -> Queue a -> Queue b
map f (inqueue, outqueue) =
  (List.map f inqueue, List.map f outqueue)
 
 
{-| converts a queue into a list  -}
 
fromList : List a -> Queue a
fromList l =
  (l, [])
 
 
{-| converts a list into a queue  -}
 
toList : Queue a -> List a
toList (inqueue, outqueue) =
  inqueue ++ (List.reverse outqueue)

You can download the module from here [download id=”1835″]


An Introduction to Elm Series: Solution to ‘Binary Tree’ example

In http://elm-lang.org/examples/binary-tree, we are given a basic implementation of a binary tree and we are asked to extend it in various ways.

To implement the Breadth First Traversal, we had to use another module that acts like a Queue. The code of that Queue is available at this post http://bytefreaks.net/programming-2/elm/an-introduction-to-elm-series-solution-to-binary-tree-example-supplementary-module-queue and it is also included in the zip file with the code of this solution ( [download id=”1828″]).

Below you will find our solutions to these challenges.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
{- OVERVIEW ------------------------------------------------------
 
   A "Tree" represents a binary tree. A "Node" in a binary tree
   always has two children. A tree can also be "Empty". Below I have
   defined "Tree" and a number of useful functions.
 
   This example also includes some challenge problems!
 
   ----------------------------------------------------------------
-}
 
 
module Main exposing (..)
 
import Queue exposing (Queue)
import Html exposing (Html, div, text, br)
import Html.Attributes exposing (style)
 
 
-- TREES
 
 
type Tree a
    = Empty
    | Node a (Tree a) (Tree a)
 
 
empty : Tree a
empty =
    Empty
 
 
singleton : a -> Tree a
singleton v =
    Node v Empty Empty
 
 
insert : comparable -> Tree comparable -> Tree comparable
insert x tree =
    case tree of
        Empty ->
            singleton x
 
        Node y left right ->
            if x > y then
                Node y left (insert x right)
            else if x < y then
                Node y (insert x left) right
            else
                tree
 
 
fromList : List comparable -> Tree comparable
fromList xs =
    List.foldl insert empty xs
 
 
depth : Tree a -> Int
depth tree =
    case tree of
        Empty ->
            0
 
        Node v left right ->
            1 + max (depth left) (depth right)
 
 
map : (a -> b) -> Tree a -> Tree b
map f tree =
    case tree of
        Empty ->
            Empty
 
        Node v left right ->
            Node (f v) (map f left) (map f right)
 
 
 
-- (1) Sum all of the elements of a tree.
 
 
sum : Tree number -> number
sum tree =
    case tree of
        Empty ->
            0
 
        Node value left right ->
            value + sum left + sum right
 
 
 
-- (2) Flatten a tree into a list.
 
 
flatten : Tree a -> List a
flatten tree =
    case tree of
        Empty ->
            []
 
        Node value left right ->
            flatten left ++ [ value ] ++ flatten right
 
 
 
-- (3) Check to see if an element is in a given tree.
 
 
isElement : a -> Tree a -> Bool
isElement element tree =
    case tree of
        Empty ->
            False
 
        Node value left right ->
            -- We short circuit the evaluation, if we find early that the element is in the tree we stop the recursion down this path.
            if value == element then
                True
            else
                isElement element left || isElement element right
 
 
 
{--(4) Write a general fold function that acts on trees. The fold
    function does not need to guarantee a particular order of
    traversal.--}
 
 
fold : (a -> b -> b) -> b -> Tree a -> b
fold function element tree =
    case tree of
        Node value left right ->
            function value (fold function (fold function element right) left)
 
        Empty ->
            element
 
 
 
{--(5) Use "fold" to do exercises 1-3 in one line each. The best
    readable versions I have come up have the following length
    in characters including spaces and function name:
      sum: 16
      flatten: 21
      isElement: 46
    See if you can match or beat me! Don't forget about currying
    and partial application!--}
-- The following functions are called as parameters for the fold function
-- Sum the values of all nodes in the tree
 
 
sumByFold : number -> number -> number
sumByFold elementA elementB =
    elementA + elementB
 
 
 
-- Flatten the tree in a pre-order fashion
 
 
flattenByFold : a -> List a -> List a
flattenByFold element list =
    [ element ] ++ list
 
 
 
-- Count the total number of nodes in the tree
 
 
countByFold : number -> number -> number
countByFold element count' =
    1 + count'
 
 
 
-- The following functions are using fold internally
-- Sum the values of all nodes in the tree
 
 
sumUsingFold : Tree number -> number
sumUsingFold =
    fold (+) 0
 
 
 
-- Flatten the tree in an in-order fashion
 
 
flattenUsingFold : Tree a -> List a
flattenUsingFold =
    fold (::) []
 
 
 
-- Checks if a certain element is in the tree
 
 
isElementUsingFold : a -> Tree a -> Bool
isElementUsingFold element =
    fold ((==) element >> (||)) False
 
 
 
-- (6) Can "fold" be used to implement "map" or "depth"?
-- TODO
{--(7) Try experimenting with different ways to traverse a
    tree: pre-order, in-order, post-order, depth-first, etc.
-- Depth-first
 
 
preOrder : Tree a -> List a
preOrder tree =
    case tree of
        Empty ->
            []
 
        Node value left right ->
            [ value ] ++ preOrder left ++ preOrder right
 
 
inOrder : Tree a -> List a
inOrder tree =
    case tree of
        Empty ->
            []
 
        Node value left right ->
            inOrder left ++ [ value ] ++ inOrder right
 
 
postOrder : Tree a -> List a
postOrder tree =
    case tree of
        Empty ->
            []
 
        Node value left right ->
            postOrder left ++ postOrder right ++ [ value ]
 
 
 
-- Breadth-first
 
 
go : Queue (Tree a) -> List a
go queue =
    let
        ( maybe', queue' ) =
            Queue.dequeue queue
    in
        case maybe' of
            Just node ->
                case node of
                    Empty ->
                        go queue'
 
                    Node value left right ->
                        [ value ] ++ go (Queue.enqueue right (Queue.enqueue left queue'))
 
            Nothing ->
                []
 
 
levelOrder : Tree a -> List a
levelOrder tree =
    case tree of
        Empty ->
            []
 
        Node value left right ->
            go (Queue.enqueue tree (Queue.init))
 
 
 
-- PLAYGROUND
 
 
deepTree =
    fromList [ 1, 2, 3 ]
 
 
niceTree =
    fromList [ 2, 1, 3 ]
 
 
deepTree' =
    fromList [ 1, 2, 3, 4, 5, 6, 7 ]
 
 
niceTree' =
    fromList [ 4, 6, 2, 3, 5, 1, 7 ]
 
 
main =
    div [ style [ ( "font-family", "monospace" ) ] ]
        [ display "depth deepTree" (depth deepTree)
        , display "depth niceTree" (depth niceTree)
        , display "incremented" (map (\n -> n + 1) niceTree)
        , display "sum deepTree" (sum deepTree)
        , display "sum niceTree" (sum niceTree)
        , display "fold sumByFold 0 deepTree" (fold sumByFold 0 deepTree)
        , display "fold sumByFold 0 niceTree" (fold sumByFold 0 niceTree)
        , display "sumUsingFold deepTree" (sumUsingFold deepTree)
        , display "sumUsingFold niceTree" (sumUsingFold niceTree)
        , display "flatten deepTree" (flatten deepTree)
        , display "flatten niceTree" (flatten niceTree)
        , display "fold flattenByFold deepTree" (fold flattenByFold [] deepTree)
        , display "fold flattenByFold niceTree" (fold flattenByFold [] niceTree)
        , display "flattenUsingFold deepTree" (flattenUsingFold deepTree)
        , display "flattenUsingFold niceTree" (flattenUsingFold niceTree)
        , display "isElement deepTree 3" (isElement 3 deepTree)
        , display "isElement deepTree 4" (isElement 4 deepTree)
        , display "isElement niceTree 3" (isElement 3 niceTree)
        , display "isElement niceTree 4" (isElement 4 niceTree)
        , display "isElementUsingFold 3 deepTree" (isElementUsingFold 3 deepTree)
        , display "isElementUsingFold 4 deepTree" (isElementUsingFold 4 deepTree)
        , display "isElementUsingFold 3 niceTree" (isElementUsingFold 3 niceTree)
        , display "isElementUsingFold 4 niceTree" (isElementUsingFold 4 niceTree)
        , display "fold countByFold 0 deepTree" (fold countByFold 0 deepTree)
        , display "fold countByFold 0 niceTree" (fold countByFold 0 niceTree)
        , display "preOrder deepTree" (preOrder deepTree)
        , display "preOrder niceTree" (preOrder niceTree)
        , display "inOrder deepTree" (inOrder deepTree)
        , display "inOrder niceTree" (inOrder niceTree)
        , display "postOrder deepTree" (postOrder deepTree)
        , display "postOrder niceTree" (postOrder niceTree)
        , display "levelOrder deepTree" (levelOrder deepTree)
        , display "levelOrder niceTree" (levelOrder niceTree)
        , br [] []
        , display "depth deepTree'" (depth deepTree')
        , display "depth niceTree'" (depth niceTree')
        , display "incremented" (map (\n -> n + 1) niceTree')
        , display "sum deepTree'" (sum deepTree')
        , display "sum niceTree'" (sum niceTree')
        , display "fold sumByFold 0 deepTree'" (fold sumByFold 0 deepTree')
        , display "fold sumByFold 0 niceTree'" (fold sumByFold 0 niceTree')
        , display "sumUsingFold deepTree'" (sumUsingFold deepTree')
        , display "sumUsingFold niceTree'" (sumUsingFold niceTree')
        , display "flatten deepTree'" (flatten deepTree')
        , display "flatten niceTree'" (flatten niceTree')
        , display "fold flattenByFold deepTree'" (fold flattenByFold [] deepTree')
        , display "fold flattenByFold niceTree'" (fold flattenByFold [] niceTree')
        , display "flattenUsingFold deepTree'" (flattenUsingFold deepTree')
        , display "flattenUsingFold niceTree'" (flattenUsingFold niceTree')
        , display "isElement deepTree' 3" (isElement 3 deepTree')
        , display "isElement deepTree' 4" (isElement 4 deepTree')
        , display "isElement niceTree' 3" (isElement 3 niceTree')
        , display "isElement niceTree' 4" (isElement 4 niceTree')
        , display "isElementUsingFold 3 deepTree'" (isElementUsingFold 3 deepTree')
        , display "isElementUsingFold 4 deepTree'" (isElementUsingFold 4 deepTree')
        , display "isElementUsingFold 3 niceTree'" (isElementUsingFold 3 niceTree')
        , display "isElementUsingFold 4 niceTree'" (isElementUsingFold 4 niceTree')
        , display "fold countByFold 0 deepTree'" (fold countByFold 0 deepTree')
        , display "fold countByFold 0 niceTree'" (fold countByFold 0 niceTree')
        , display "preOrder deepTree'" (preOrder deepTree')
        , display "preOrder niceTree'" (preOrder niceTree')
        , display "inOrder deepTree'" (inOrder deepTree')
        , display "inOrder niceTree'" (inOrder niceTree')
        , display "postOrder deepTree'" (postOrder deepTree')
        , display "postOrder niceTree'" (postOrder niceTree')
        , display "levelOrder deepTree'" (levelOrder deepTree')
        , display "levelOrder niceTree'" (levelOrder niceTree')
       ; ]
 
 
display : String -> a -> Html msg
display name value =
    div [] [ text (name ++ " ==> " ++ toString value) ]
 
 
 
{-----------------------------------------------------------------
 
Exercises:
 
(1) Sum all of the elements of a tree.
 
       sum : Tree number -> number
 
(2) Flatten a tree into a list.
 
       flatten : Tree a -> List a
 
(3) Check to see if an element is in a given tree.
 
       isElement : a -> Tree a -> Bool
 
(4) Write a general fold function that acts on trees. The fold
    function does not need to guarantee a particular order of
    traversal.
 
       fold : (a -> b -> b) -> b -> Tree a -> b
 
(5) Use "fold" to do exercises 1-3 in one line each. The best
    readable versions I have come up have the following length
    in characters including spaces and function name:
      sum: 16
      flatten: 21
      isElement: 46
    See if you can match or beat me! Don't forget about currying
    and partial application!
 
(6) Can "fold" be used to implement "map" or "depth"?
 
(7) Try experimenting with different ways to traverse a
    tree: pre-order, in-order, post-order, depth-first, etc.
 
-----------------------------------------------------------------}

The output of the above is the following

depth deepTree ==> 3
depth niceTree ==> 2
incremented ==> Node 3 (Node 2 Empty Empty) (Node 4 Empty Empty)
sum deepTree ==> 6
sum niceTree ==> 6
fold sumByFold 0 deepTree ==> 6
fold sumByFold 0 niceTree ==> 6
sumUsingFold deepTree ==> 6
sumUsingFold niceTree ==> 6
flatten deepTree ==> [1,2,3]
flatten niceTree ==> [1,2,3]
fold flattenByFold deepTree ==> [1,2,3]
fold flattenByFold niceTree ==> [2,1,3]
flattenUsingFold deepTree ==> [1,2,3]
flattenUsingFold niceTree ==> [2,1,3]
isElement deepTree 3 ==> True
isElement deepTree 4 ==> False
isElement niceTree 3 ==> True
isElement niceTree 4 ==> False
isElementUsingFold 3 deepTree ==> True
isElementUsingFold 4 deepTree ==> False
isElementUsingFold 3 niceTree ==> True
isElementUsingFold 4 niceTree ==> False
fold countByFold 0 deepTree ==> 3
fold countByFold 0 niceTree ==> 3
preOrder deepTree ==> [1,2,3]
preOrder niceTree ==> [2,1,3]
inOrder deepTree ==> [1,2,3]
inOrder niceTree ==> [1,2,3]
postOrder deepTree ==> [3,2,1]
postOrder niceTree ==> [1,3,2]
levelOrder deepTree ==> [1,2,3]
levelOrder niceTree ==> [2,1,3]

depth deepTree' ==> 7
depth niceTree' ==> 3
incremented ==> Node 5 (Node 3 (Node 2 Empty Empty) (Node 4 Empty Empty)) (Node 7 (Node 6 Empty Empty) (Node 8 Empty Empty))
sum deepTree' ==> 28
sum niceTree' ==> 28
fold sumByFold 0 deepTree' ==> 28
fold sumByFold 0 niceTree' ==> 28
sumUsingFold deepTree' ==> 28
sumUsingFold niceTree' ==> 28
flatten deepTree' ==> [1,2,3,4,5,6,7]
flatten niceTree' ==> [1,2,3,4,5,6,7]
fold flattenByFold deepTree' ==> [1,2,3,4,5,6,7]
fold flattenByFold niceTree' ==> [4,2,1,3,6,5,7]
flattenUsingFold deepTree' ==> [1,2,3,4,5,6,7]
flattenUsingFold niceTree' ==> [4,2,1,3,6,5,7]
isElement deepTree' 3 ==> True
isElement deepTree' 4 ==> True
isElement niceTree' 3 ==> True
isElement niceTree' 4 ==> True
isElementUsingFold 3 deepTree' ==> True
isElementUsingFold 4 deepTree' ==> True
isElementUsingFold 3 niceTree' ==> True
isElementUsingFold 4 niceTree' ==> True
fold countByFold 0 deepTree' ==> 7
fold countByFold 0 niceTree' ==> 7
preOrder deepTree' ==> [1,2,3,4,5,6,7]
preOrder niceTree' ==> [4,2,1,3,6,5,7]
inOrder deepTree' ==> [1,2,3,4,5,6,7]
inOrder niceTree' ==> [1,2,3,4,5,6,7]
postOrder deepTree' ==> [7,6,5,4,3,2,1]
postOrder niceTree' ==> [1,3,2,5,7,6,4]
levelOrder deepTree' ==> [1,2,3,4,5,6,7]
levelOrder niceTree' ==> [4,2,6,1,3,5,7]

You can download the solution from here [download id=”1828″]


An Introduction to Elm Series: Solution to ‘Pair of Counters’ example

In http://guide.elm-lang.org/architecture/modularity/counter_pair.html, we are given an application that reuses the counter application that was converted into a module for the purpose of this tutorial.

We were asked to make a swap between the two instances of the counter. That was easy due to the nature of the updates that create a new version of the model each time instead of updating it. So, we just swapped the instances of the two counters in the update.

Later, we were asked to extend the counter to log some statistics, since the parent module was not using the model directly it was very easy for us to extend the model and implement the changes needed in the update and the view of the model. No signatures were changed and init was modified to initialize all statistics along with the value.

Parent Module (1-counter-pair.elm)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import Counter
import Html exposing (Html, button, div, text)
import Html.App as App
import Html.Events exposing (onClick)
 
 
 
main =
  App.beginnerProgram
    { model = init 0 0
    , update = update
    , view = view
    }
 
 
 
-- MODEL
 
 
type alias Model =
  { topCounter : Counter.Model
  , bottomCounter : Counter.Model
  }
 
 
init : Int -> Int -> Model
init top bottom =
  { topCounter = Counter.init top
  , bottomCounter = Counter.init bottom
  }
 
 
 
-- UPDATE
 
 
type Msg
  = Reset
  | Top Counter.Msg
  | Bottom Counter.Msg
  | Swap
 
 
update : Msg -> Model -> Model
update message model =
  case message of
    Reset ->
      init 0 0
 
    Top msg ->
      { model | topCounter = Counter.update msg model.topCounter }
 
    Bottom msg ->
      { model | bottomCounter = Counter.update msg model.bottomCounter }
 
    Swap ->
      { model | bottomCounter = model.topCounter, topCounter = model.bottomCounter }
 
 
-- VIEW
 
 
view : Model -> Html Msg
view model =
  div
    []
    [ App.map Top (Counter.view model.topCounter)
    , App.map Bottom (Counter.view model.bottomCounter)
    , button [ onClick Reset ] [ text "RESET" ]
    , button [ onClick Swap ] [ text "Swap" ]
   ; ]

Counter Module (Counter.elm)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
module Counter exposing (Model, Msg, init, update, view)
 
import Html exposing (..)
import Html.Attributes exposing (..)
import Html.Events exposing (onClick)
 
 
 
-- MODEL
 
 
type alias Model =
  { count : Int
  , max' : Int
  , min' : Int
  , increment : Int
  , decrement : Int
  }
 
 
init : Int -> Model
init count =
  Model count 0 0 0 0
 
-- UPDATE
 
 
type Msg
  = Increment
  | Decrement
 
 
update : Msg -> Model -> Model
update msg model =
  case msg of
    Increment ->
      { model |
        count = model.count + 1
        , max' = Basics.max (model.count + 1) model.max'
        , increment = model.increment + 1
      }
 
    Decrement ->
      { model |
        count = model.count - 1
        , min' = Basics.min (model.count - 1) model.min'
        , decrement = model.decrement + 1
      }
 
 
 
-- VIEW
 
 
view : Model -> Html Msg
view model =
  div []
    [ button [ onClick Decrement ] [ text "-" ]
    , div [ countStyle ] [ text (toString model.count) ]
    , button [ onClick Increment ] [ text "+" ]
    , div [] [ text ("Max " ++ (toString model.max')) ]
    , div [] [ text ("Min " ++ (toString model.min')) ]
    , div [] [ text ("Increment " ++ (toString model.increment)) ]
    , div [] [ text ("Decrement " ++ (toString model.decrement)) ]
   ; ]
 
 
countStyle : Attribute msg
countStyle =
  style
    [ ("font-size", "20px")
    , ("font-family", "monospace")
    , ("display", "inline-block")
    , ("width", "50px")
    , ("text-align", "center")
   ; ]

 

You can download the solution from here [download id=”1822″]