asn1c: Full working example of ASN.1 in C/C++


The following project demonstrates a full working example of encoding and decoding ASN.1 structures using the asn1c compiler of http://lionet.info/asn1c/

In this project we assumed that we have to encode a set of geometric elements, including:

  • A rectangle that is composed by its height and its width
  • A rectangular cuboid that it is composed by a rectangle and a depth parameter
  • A list of rectangular cuboids that has no limit on how many elements to add to it
  • A list of rectangular cuboids that must have at least one element and at most three
  • We assume that all parameters should be positive integer values

[download id=”2470″]

Following is our ASN.1 syntax to describe the above elements:

Geometry.asn1

GeometryModule DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
    height INTEGER (0..MAX),
    width INTEGER (0..MAX)
}

RectangularCuboid ::= SEQUENCE {
    depth INTEGER (0..MAX),
    rectangle Rectangle
}

UnlimitedRectangularCuboids ::= SEQUENCE OF RectangularCuboid

LimitedRectangularCuboids ::= SEQUENCE SIZE(1..3) OF RectangularCuboid

END

Inside the directory where our source is located, we created folder called geometryASN.
From that folder we executed the following command to generate the c code that is needed for our C/C++ source code to operate:

asn1c -fcompound-names -gen-PER ../Geometry.asn1

Following is our C source code that creates new ANS.1 elements, encodes them, decodes them and verifies that all limitations and constraints were met.

[download id=”2470″]

main.cpp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
//From the folder geometryASN, to convert the ASN1 to c execute the following
// asn1c -fcompound-names -gen-PER ../Geometry.asn1
#include <iostream>
#include "geometryASN/Rectangle.h"
#include "geometryASN/RectangularCuboid.h"
#include "geometryASN/LimitedRectangularCuboids.h"
#include "geometryASN/UnlimitedRectangularCuboids.h"
 
bool validate_constraints(asn_TYPE_descriptor_t *type_descriptor, const void *struct_ptr) {
 
  char error_buffer[128];
  size_t error_length = sizeof(error_buffer);
  const int return_value = asn_check_constraints(type_descriptor, struct_ptr, error_buffer, &error_length);
 
  if (return_value) {
    perror("asn_check_constraints() failed");
  }
  return (return_value == 0);
}
 
void *encode_and_decode_object(asn_TYPE_descriptor_t *type_descriptor, void *struct_ptr) {
 
  //First we validate that our object meets the expected constraints
  if (validate_constraints(type_descriptor, struct_ptr)) {
    void *buffer;
    asn_per_constraints_s *constraints = NULL;
    //Then, we encode the object to ASN.1 and assign the data to a buffer in memory
    const ssize_t ec = uper_encode_to_new_buffer(type_descriptor, constraints, struct_ptr, &buffer);
    if (ec == -1) {
      perror("uper_encode_to_new_buffer() failed");
    } else {
      //ASN.1 encoded object is not in the buffer variable and it is available for you to use.
      //Finally, since the encoding process went fine, we decode the data to verify with our own eyes that the process went smoothly
      void *decoded_object = 0;
      const asn_dec_rval_t rval = uper_decode(0, type_descriptor, &decoded_object, buffer, (size_t) ec, 0, 0);
      free(buffer);
      if (rval.code != RC_OK) {
        perror("uper_decode() failed");
        fprintf(stderr, "Broken encoding at byte %ld\n", rval.consumed);
      } else {
        return decoded_object;
      }
    }
  }
  return NULL;
}
 
int main(int argc, char *argv[]) {
 
  //Scenario A: We test basic encoding and decoding on a Rectangle.
  {
    //First we create a rectangle and then we encode it
    Rectangle_t *rectangle = (Rectangle_t *) calloc(1, sizeof(Rectangle_t));
    if (rectangle == NULL) {
      perror("calloc() failed");
      exit(EXIT_FAILURE);
    }
    rectangle->height = 10;
    rectangle->width = 150;
 
    Rectangle_t *decoded_rectangle = (Rectangle_t *) encode_and_decode_object(&asn_DEF_Rectangle, rectangle);
 
    if (decoded_rectangle != NULL) {
      if (rectangle->height != decoded_rectangle->height || rectangle->width != decoded_rectangle->width) {
        perror("uper_decode() failed. Wrong values found after decoding");
        ASN_STRUCT_FREE(asn_DEF_Rectangle, rectangle);
        ASN_STRUCT_FREE(asn_DEF_Rectangle, decoded_rectangle);
        exit(EXIT_FAILURE);
      }
    }
    ASN_STRUCT_FREE(asn_DEF_Rectangle, rectangle);
    ASN_STRUCT_FREE(asn_DEF_Rectangle, decoded_rectangle);
  }
 
  //Scenario B: We test basic encoding and decoding on a Rectangle.
  //We will provide a value that is out of the constraints area to force the test to fail.
  {
    //First we create a rectangle and then we encode it
    Rectangle_t *rectangle = (Rectangle_t *) calloc(1, sizeof(Rectangle_t));
    if (rectangle == NULL) {
      perror("calloc() failed");
      exit(EXIT_FAILURE);
    }
    rectangle->height = -10;
    rectangle->width = 150;
 
    Rectangle_t *decoded_rectangle = (Rectangle_t *) encode_and_decode_object(&asn_DEF_Rectangle, rectangle);
 
    if (decoded_rectangle != NULL) {
      perror("This test should have failed due to the constaint on the range of the valid values.");
      ASN_STRUCT_FREE(asn_DEF_Rectangle, rectangle);
      ASN_STRUCT_FREE(asn_DEF_Rectangle, decoded_rectangle);
      exit(EXIT_FAILURE);
    }
    ASN_STRUCT_FREE(asn_DEF_Rectangle, rectangle);
  }
 
  //Scenario C: We test basic encoding and decoding on a Rectangular Cuboid.
  {
    //First we create a rectangular cuboid and then we encode it
    RectangularCuboid_t *rectangular_cuboid = (RectangularCuboid_t *) calloc(1, sizeof(RectangularCuboid_t));
    if (rectangular_cuboid == NULL) {
      perror("calloc() failed");
      exit(EXIT_FAILURE);
    }
    rectangular_cuboid->depth = 27;
    rectangular_cuboid->rectangle.height = 10;
    rectangular_cuboid->rectangle.width = 150;
 
    RectangularCuboid_t *decoded_rectangular_cuboid = (RectangularCuboid_t *) encode_and_decode_object(
        &asn_DEF_RectangularCuboid, rectangular_cuboid);
 
    if (decoded_rectangular_cuboid != NULL) {
      if (rectangular_cuboid->rectangle.height != decoded_rectangular_cuboid->rectangle.height
          || rectangular_cuboid->rectangle.width != decoded_rectangular_cuboid->rectangle.width
          || rectangular_cuboid->depth != decoded_rectangular_cuboid->depth) {
        perror("uper_decode() failed. Wrong values found after decoding");
        ASN_STRUCT_FREE(asn_DEF_RectangularCuboid, rectangular_cuboid);
        ASN_STRUCT_FREE(asn_DEF_RectangularCuboid, decoded_rectangular_cuboid);
        exit(EXIT_FAILURE);
      }
    }
    ASN_STRUCT_FREE(asn_DEF_RectangularCuboid, rectangular_cuboid);
    ASN_STRUCT_FREE(asn_DEF_RectangularCuboid, decoded_rectangular_cuboid);
  }
 
  //Scenario D: We will create an array of elements that has no limitation on its size.
  {
    UnlimitedRectangularCuboids_t *unlimited_rectangular_cuboids = (UnlimitedRectangularCuboids_t *) calloc(1,
                                                                                                            sizeof(UnlimitedRectangularCuboids_t));
    if (unlimited_rectangular_cuboids == NULL) {
      perror("calloc() failed");
      exit(EXIT_FAILURE);
    }
 
    int i;
    for (i = 0; i < 10; i++) {       RectangularCuboid_t *tmp_rectangular_cuboid = (RectangularCuboid_t *) calloc(1, sizeof(RectangularCuboid_t));       if (tmp_rectangular_cuboid == NULL) {         perror("calloc() failed");         exit(EXIT_FAILURE);       }       tmp_rectangular_cuboid->depth = i;
      tmp_rectangular_cuboid->rectangle.height = i * 11;
      tmp_rectangular_cuboid->rectangle.width = i * 101;
 
      const int result = asn_set_add(unlimited_rectangular_cuboids, tmp_rectangular_cuboid);
      if (result != 0) {
        perror("asn_set_add() failed");
        ASN_STRUCT_FREE(asn_DEF_UnlimitedRectangularCuboids, unlimited_rectangular_cuboids);
        exit(EXIT_FAILURE);
      }
    }
 
    UnlimitedRectangularCuboids_t *decoded_unlimited_rectangular_cuboids = (UnlimitedRectangularCuboids_t *) encode_and_decode_object(
        &asn_DEF_UnlimitedRectangularCuboids, unlimited_rectangular_cuboids);
 
    if (decoded_unlimited_rectangular_cuboids != NULL) {
      for (i = 0; i < decoded_unlimited_rectangular_cuboids->list.count; i++) {
        RectangularCuboid_t *tmp_rectangular_cuboid = decoded_unlimited_rectangular_cuboids->list.array[i];
        if (tmp_rectangular_cuboid->rectangle.height != i * 11
            || tmp_rectangular_cuboid->rectangle.width != i * 101
            || tmp_rectangular_cuboid->depth != i) {
          perror("uper_decode() failed. Wrong values found after decoding");
          ASN_STRUCT_FREE(asn_DEF_UnlimitedRectangularCuboids, unlimited_rectangular_cuboids);
          ASN_STRUCT_FREE(asn_DEF_UnlimitedRectangularCuboids, decoded_unlimited_rectangular_cuboids);
          exit(EXIT_FAILURE);
        }
      }
    }
    ASN_STRUCT_FREE(asn_DEF_UnlimitedRectangularCuboids, unlimited_rectangular_cuboids);
    ASN_STRUCT_FREE(asn_DEF_UnlimitedRectangularCuboids, decoded_unlimited_rectangular_cuboids);
  }
 
  //Scenario E: We will create an array of elements that has a limitation on how many elements it can accept.
  //We will add more elements than expected and we expect the encoding to fail.
  {
    LimitedRectangularCuboids_t *limited_rectangular_cuboids = (LimitedRectangularCuboids_t *) calloc(1,
                                                                                                      sizeof(LimitedRectangularCuboids_t));
    if (limited_rectangular_cuboids == NULL) {
      perror("calloc() failed");
      exit(EXIT_FAILURE);
    }
 
    int i;
    for (i = 0; i < 10; i++) {       RectangularCuboid_t *tmp_rectangular_cuboid = (RectangularCuboid_t *) calloc(1, sizeof(RectangularCuboid_t));       if (tmp_rectangular_cuboid == NULL) {         perror("calloc() failed");         exit(EXIT_FAILURE);       }       tmp_rectangular_cuboid->depth = i;
      tmp_rectangular_cuboid->rectangle.height = i * 11;
      tmp_rectangular_cuboid->rectangle.width = i * 101;
 
      const int result = asn_set_add(limited_rectangular_cuboids, tmp_rectangular_cuboid);
      if (result != 0) {
        perror("asn_set_add() failed");
        ASN_STRUCT_FREE(asn_DEF_LimitedRectangularCuboids, limited_rectangular_cuboids);
        exit(EXIT_FAILURE);
      }
    }
 
    LimitedRectangularCuboids_t *decoded_limited_rectangular_cuboids = (LimitedRectangularCuboids_t *) encode_and_decode_object(
        &asn_DEF_LimitedRectangularCuboids, limited_rectangular_cuboids);
 
    if (decoded_limited_rectangular_cuboids != NULL) {
      perror("This test should have failed due to limitation on the size of the list.");
      ASN_STRUCT_FREE(asn_DEF_LimitedRectangularCuboids, limited_rectangular_cuboids);
      ASN_STRUCT_FREE(asn_DEF_LimitedRectangularCuboids, decoded_limited_rectangular_cuboids);
      exit(EXIT_FAILURE);
    }
    ASN_STRUCT_FREE(asn_DEF_LimitedRectangularCuboids, limited_rectangular_cuboids);
  }
 
  printf ("All tests were successful\n");
  return EXIT_SUCCESS;
}

[download id=”2470″]

This post is also available in: Greek

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.