[download id=”2765″]
The following code will split a buffer in C
to a list of segments.
The size of the segments does not have to be a multiple of a byte.
User defines the size of the segments in bits
when calling node_t *segment(const unsigned char buffer[], const unsigned int buffer_bytes_size, const unsigned int segment_bit_size, const unsigned int first_segment_bit_size);
.
Each segment is an instance of element_t
structure as follows:
1 2 3 4 5 | struct element_t { unsigned char *segment; unsigned int unused_bits; unsigned int size; }; |
Variable unused_bits
defines the bits in the last byte that should not be used in future operations.
[download id=”2765″]
Following is the code that performs the segmentation:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | #include "segmentation.h" #include <math.h> #include <limits.h> #include <malloc.h> #include <string.h> //This method will create a string made of 0s and 1s representing the bits in an object. //It will skip printing the last n bits as per the input char *create_bit_representation_string( const void *object, const unsigned int size, const unsigned int skip_last_bits) { unsigned int i = 0; const unsigned char *byte; unsigned int temp_size = size; const double mask_filter = pow (2, skip_last_bits); const unsigned int skip_last_bytes = skip_last_bits / CHAR_BIT; char *result = malloc ( sizeof ( char ) * size * CHAR_BIT - skip_last_bits + 1); for (byte = object; temp_size--; ++byte) { unsigned char mask; for (mask = 1 << (CHAR_BIT - 1); mask; mask >>= 1) { //We do not want to print the last n bits of the last byte as they should always be 0 if ((temp_size < skip_last_bytes) || (temp_size == 0 && mask < mask_filter)) { break ; } result[i++] = ( char ) (mask & *byte ? '1' : '0' ); } } result[i] = '\0' ; return result; } //Creating a mask where the first n bits are 1s and the rest are 0s to zero the unused bits of the segment unsigned char create_left_mask( const unsigned int bits) { unsigned char left_mask = 0; unsigned int i; for (i = 0; i < bits; i++) { left_mask |= (1 << (CHAR_BIT - 1 - i)); } return left_mask; } //This function will shift to the left a char array for up to 7 bits. //It will update the object and return the number of bits shifted unsigned int shift_left_char_array_n_bits( void *object, const unsigned int size, const unsigned int bits) { if (bits == 0) { return 0; } if (bits < 1 || bits > CHAR_BIT - 1) { fprintf (stderr, "%s: Bad value %u for 'bits', it should be [1,7]" "\n\tIgnoring operation\n" , __FUNCTION__, bits); return 0; } //Creating a mask where the first n bits are 1s and the rest are 0s. const unsigned char left_mask = create_left_mask(bits); unsigned char *byte; unsigned int temp_size = size; //We use temp_size as a counter (until it reaches 0) and we move the byte pointer at each loop for (byte = object; temp_size--; ++byte) { unsigned char carry = 0; if (temp_size) { //We get the bits we want to carry using the mask carry = byte[1] & left_mask; //Then shift them to the right, as this is where they will be in the new byte. carry >>= (CHAR_BIT - bits); } //Shifting the new byte to make space for the carry *byte <<= bits; //Applying carry *byte |= carry; } return bits; } const unsigned int calculate_unused_bits( const unsigned int segment_bit_size) { return (CHAR_BIT - (segment_bit_size % CHAR_BIT)) % CHAR_BIT; } element_t *create_element( const unsigned char buffer[], const unsigned int byte_size, const unsigned int unused_bits, const unsigned int bytes_skipped, const unsigned char left_mask) { element_t *element = (element_t *) malloc ( sizeof (element_t)); element->segment = malloc (byte_size); element->size = byte_size; element->unused_bits = unused_bits; memcpy (element->segment, &(buffer[bytes_skipped]), byte_size); //Zeroing the unused bits at the end of the segment element->segment[byte_size - 1] &= left_mask; return element; } //This method will split a buffer to segments of specific size in bits and it will return them as a list //(each element contains the segment data, its size in bytes and the number of bits that are not used from the last byte) //If the input buffer is less than the segment size, it will return one segment with all the data. //The user can set the bit size of the first segment to be different than the rest using first_segment_bit_size > 0 node_t *segment( const unsigned char buffer[], const unsigned int buffer_bytes_size, const unsigned int segment_bit_size, const unsigned int first_segment_bit_size) { if (buffer_bytes_size == 0) { fprintf (stderr, "%s: Bad value %u for 'buffer_bytes_size', it should be greater than 0" "\n\tIgnoring operation\n" , __FUNCTION__, buffer_bytes_size); return NULL; } if (segment_bit_size == 0) { fprintf (stderr, "%s: Bad value %u for 'segment_bit_size', it should be greater than 0" "\n\tIgnoring operation\n" , __FUNCTION__, segment_bit_size); return NULL; } node_t *head = NULL; const double char_bit = CHAR_BIT; const unsigned int first_segment_byte_size = (unsigned int ) ceil ( first_segment_bit_size / char_bit); if (first_segment_byte_size > buffer_bytes_size) { append(&head, create_element(buffer, buffer_bytes_size, 0, 0, UCHAR_MAX)); return head; } unsigned char *temp_buffer = malloc (buffer_bytes_size); memcpy (temp_buffer, buffer, buffer_bytes_size); unsigned int bits_shifted = 0; unsigned int bytes_skipped = 0; if (first_segment_bit_size > 0) { const unsigned int first_segment_unused_bits = calculate_unused_bits( first_segment_bit_size); const unsigned int first_segment_byte_size_without_incomplete_byte = first_segment_bit_size / CHAR_BIT; const unsigned int first_segment_bits = CHAR_BIT - first_segment_unused_bits; const unsigned char left_mask = create_left_mask(first_segment_bits); append(&head, create_element(temp_buffer, first_segment_byte_size, first_segment_unused_bits, bytes_skipped, left_mask)); bytes_skipped += first_segment_byte_size_without_incomplete_byte; if (bytes_skipped == buffer_bytes_size) { free (temp_buffer); return head; } if (first_segment_bits > 0 && first_segment_bits < CHAR_BIT) { bits_shifted += shift_left_char_array_n_bits(&(temp_buffer[bytes_skipped]), buffer_bytes_size - bytes_skipped - (bits_shifted / CHAR_BIT), first_segment_bits); } } const unsigned int segment_byte_size = (unsigned int ) ceil (segment_bit_size / char_bit); const unsigned int buffer_bits_size = (buffer_bytes_size - bytes_skipped) * CHAR_BIT - bits_shifted; const unsigned int segments_count = buffer_bits_size / segment_bit_size; if (segments_count == 0) { append(&head, create_element(temp_buffer, buffer_bytes_size - bytes_skipped, bits_shifted, bytes_skipped, UCHAR_MAX)); free (temp_buffer); return head; } //Creating a mask where first n bits are 1s and the rest are 0s to zero the unused bits of the segment const unsigned int segment_unused_bits = calculate_unused_bits(segment_bit_size); const unsigned int last_segment_bits = CHAR_BIT - segment_unused_bits; const unsigned char left_mask = create_left_mask(last_segment_bits); const unsigned int segment_byte_size_without_incomplete_byte = segment_bit_size / CHAR_BIT; const unsigned int extra_bits = buffer_bits_size % segment_bit_size; unsigned int i; for (i = 0; i < segments_count; i++) { append(&head, create_element(temp_buffer, segment_byte_size, segment_unused_bits, bytes_skipped, left_mask)); bytes_skipped += segment_byte_size_without_incomplete_byte; if ((segments_count > 1 || extra_bits > 0) && (last_segment_bits > 0 && last_segment_bits < CHAR_BIT)) { bits_shifted += shift_left_char_array_n_bits(&(temp_buffer[bytes_skipped]), buffer_bytes_size - bytes_skipped - (bits_shifted / CHAR_BIT), last_segment_bits); } } if (extra_bits) { const unsigned int last_segment_bytes_size = buffer_bytes_size - bytes_skipped - (bits_shifted / CHAR_BIT); const unsigned int unused_bytes_for_last_segment = segment_byte_size - last_segment_bytes_size; const unsigned int last_segment_unused_bits = segment_bit_size - (buffer_bits_size % segment_bit_size) + segment_unused_bits - (unused_bytes_for_last_segment * CHAR_BIT); append(&head, create_element(temp_buffer, last_segment_bytes_size, last_segment_unused_bits, bytes_skipped, UCHAR_MAX)); } free (temp_buffer); return head; } |
Sample code that uses the function:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | #include <stdio.h> #include <malloc.h> #include <string.h> #include <limits.h> #include <stdlib.h> #include <time.h> #include "libs/segmentation/segmentation.h" // This application will create a char array of size BUFFER_BYTE_SIZE that contains random values // and later it will split it in segments of size SEGMENT_BIT_SIZE. // The first segment will be of size FIRST_SEGMENT_BIT_SIZE. #define BUFFER_BYTE_SIZE 420 #define SEGMENT_BIT_SIZE 222 #define FIRST_SEGMENT_BIT_SIZE 11 #define POSSIBLE_VALUES 256 int main() { srand ( time (NULL)); const unsigned int buffer_byte_size = BUFFER_BYTE_SIZE; fprintf (stdout, "Buffer Size: %uB\n" , buffer_byte_size); const unsigned int segment_bit_size = SEGMENT_BIT_SIZE; fprintf (stdout, "Segment Size: %ub\n" , segment_bit_size); const unsigned int first_segment_bit_size = FIRST_SEGMENT_BIT_SIZE; fprintf (stdout, "First Segment Size: %ub\n" , first_segment_bit_size); unsigned char buffer[buffer_byte_size]; unsigned int i; for (i = 0; i < buffer_byte_size; i++) { buffer[i] = (unsigned char ) ( rand () % POSSIBLE_VALUES); } char *buffer_bits = create_bit_representation_string(buffer, buffer_byte_size, 0); const size_t buffer_length = strlen (buffer_bits); fprintf (stdout, "\tBuffer: '%s'\n" , buffer_bits); node_t *head = segment(buffer, buffer_byte_size, segment_bit_size, first_segment_bit_size); element_t *element = pop(&head); unsigned int bytes_skipped = 0; unsigned int segment_count = 0; unsigned int total_segment_bit_size = 0; while (element != NULL) { char *segment_bits = create_bit_representation_string(element->segment, element->size, element->unused_bits); const size_t segment_length = strlen (segment_bits); fprintf (stdout, "\t\tSegment %04u: Size in bytes %02u - Unused bits %04u - '%.*s'\n" , ++segment_count, element->size, element->unused_bits, element->size * CHAR_BIT - element->unused_bits, segment_bits); if (segment_length == 0) { fprintf (stderr, "Data validation failed." "\n\tBuffer size in bytes %d" "\n\tSegment size in bits %d" "\n\tFirst Segment size in bits %d" "\n\tFound empty segment\n" , buffer_byte_size, segment_bit_size, first_segment_bit_size); clear(&head); free (segment_bits); free (element->segment); free (element); free (buffer_bits); return EXIT_FAILURE; } for (i = 0; i < segment_length && bytes_skipped + i < buffer_length; i++) { if (segment_bits[i] != buffer_bits[bytes_skipped + i]) { fprintf (stderr, "Data validation failed." "\n\tBuffer size in bytes %d" "\n\tSegment size in bits %d" "\n\tFirst Segment size in bits %d" "\n\tPosition %u of the buffer" "\n\tPosition %u of the segment\n" , buffer_byte_size, segment_bit_size, first_segment_bit_size, bytes_skipped + i, i); clear(&head); free (segment_bits); free (element->segment); free (element); free (buffer_bits); return EXIT_FAILURE; } } free (segment_bits); bytes_skipped += segment_length; const unsigned int current_segment_bit_size = ((element->size - 1) * CHAR_BIT) + CHAR_BIT - element->unused_bits; if (segment_length != current_segment_bit_size) { fprintf (stderr, "Data validation failed." "\n\tBuffer size in bytes %d" "\n\tSegment size in bits %d" "\n\tFirst Segment size in bits %d" "\n\tCurrent Segment bit size (%u) not equal to its string representation (%lu)\n" , buffer_byte_size, segment_bit_size, first_segment_bit_size, current_segment_bit_size, segment_length); clear(&head); free (segment_bits); free (element->segment); free (element); free (buffer_bits); return EXIT_FAILURE; } total_segment_bit_size += current_segment_bit_size; free (element->segment); free (element); element = pop(&head); } free (buffer_bits); if (buffer_length != total_segment_bit_size) { fprintf (stderr, "Data validation failed." "\n\tBuffer size in bytes %d" "\n\tSegment size in bits %d" "\n\tFirst Segment size in bits %d" "\n\tTotal Segment bit size (%u) not equal to full string representation (%lu)\n" , buffer_byte_size, segment_bit_size, first_segment_bit_size, total_segment_bit_size, buffer_length); return EXIT_FAILURE; } return EXIT_SUCCESS; } |
[download id=”2765″]
This post is also available in: Αγγλικα