asn.1


asn1c: undefined reference to `SET_OF_encode_uper’

The following post is for the https://lionet.info/asn1c/ (repository: https://github.com/vlm/asn1c/)

When trying to link an ASN.1 structure that uses a SET OF, with support for Unaligned Packed Encoding Rules (UPER), we get the following error: undefined reference to 'SET_OF_encode_uper'.

Unfortunately, there is currently no solution for this problem, so we replaced the SET OF with a SEQUENCE OF.

The SEQUENCE OF type is the list (array) of simple or constructed types. The SET OF type models the bag of structures. It resembles the SEQUENCE OF type, but the order is not important: i.e. the elements may arrive in the order which is not necessarily the same as the in-memory order on the remote machines.

— From http://lionet.info/asn1c/asn1c-usage.html

Original (problematic) code

Elements ::= SEQUENCE
{
    property INTEGER,
    objects SET OF object
}

Updated (working) code

Elements ::= SEQUENCE
{
    property INTEGER,
    objects SEQUENCE OF object
}

 


asn1c: How do I know how big a buffer to allocate before using ‘uper_encode_to_new_buffer’?

The following post is for the https://lionet.info/asn1c/ (repository: https://github.com/vlm/asn1c/)

There is no need to compute the space needed.

If you pass the address to a pointer that is NULL pointer as the last parameter of uper_encode_to_new_buffer(asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void *sptr, void **buffer_r) , then it will allocate by itself the required space.

void *buffer = NULL;
asn_per_constraints_s *constraints = NULL;
ssize_t ec = uper_encode_to_new_buffer(&asn_DEF_Image, constraints, image, &buffer);


asn1c: What is the ‘write_stream’ parameter in the example code

The following post is for the https://lionet.info/asn1c/ (repository: https://github.com/vlm/asn1c/)

The asn1c usage manual (PDF), mentions an element called write_stream but it does not define what it is.

What write_stream is can be found in converter-sample.c  and in the manual under the name write_out:

/* Dump the buffer out to the specified FILE */
static int write_out(const void *buffer, size_t size, void *key) {
  FILE *fp = (FILE *)key;
  return (fwrite(buffer, 1, size, fp) == size) ? 0 : -1;
}

write_out is function that has the following signature write_out(const void *buffer, size_t size, void *app_key) and is used as a callback by der_encode() and other functions.

This callback receives as input the pointer to an element (const void *buffer), the size of that element (size_t size) and some context (void *app_key).
In this example, we can see that the user is using der_encode() which accepts a FILE * as the last parameter, which later is passed to write_out() as the context.


asn1c: Generating code using ‘Automatic Tags’ and negative value as default value creates invalid function names

The following post is for the https://lionet.info/asn1c/ (repository: https://github.com/vlm/asn1c/)

When compiling the following ASN.1 data structure

GeographyModule DEFINITIONS AUTOMATIC TAGS ::= BEGIN

    Coordinates ::= SEQUENCE
    {
        -- latitude from -90 till 90 degrees --
        latitude INTEGER(-9000000..9000000) DEFAULT -8000000,
        -- longitude from -180 till 179.99999 degrees, worst precision 1.1132m at equator --
        longitude INTEGER(-18000000..17999999) DEFAULT -12000000
    }

END

the use of both the AUTOMATIC TAGS option and the use of a negative value -8000000 in the position of the default value causes asn1c to create invalid function names in the Coordinates object.

For example, the above ASN.1 syntax will produce the following invalid function name int asn_DFL_2_set_-800000(int set_value, void **sptr).

Compilation command for asn1c

From folder asn1c_gps/asn1 we used the following command:

/home/developer/asn1c/asn1c/asn1c -pdu=auto -S /home/developer/asn1c/skeletons/ -fcompound-names -gen-PER ../geography.asn1

Version of asn1c

'ASN.1 Compiler, v0.9.28'

Example

Full example code demonstrating the bug can be found here ( asn1c_gps - Full example - Demonstrating Bug (62 downloads) ).

If you want to use the code and see that all other operations are fine, replace _- with _minus_ in the file Coordinates.c and the code will become valid and usable.

After you perform the above change, you can use the code in main.cpp to see the our cycle of execution that encodes and decodes an object.


asn1c: Decoding an OCTET STRING with lower bound limit on its size fails for uper_decode()

The following post is for the https://lionet.info/asn1c/ (repository: https://github.com/vlm/asn1c/)

Hello guys,

I’ve noticed that when I set a lower bound limit on the size of an octet string, it fails to decode it.
To reproduce this scenario I created a small but full example that is located here( asn1c_image - Full example - Demonstrating Bug (99 downloads) ).

The example( asn1c_image - Full example - Demonstrating Bug (99 downloads) ) is an application that uses the code generated by asn1c and has the following behavior:

  1. It will read a name of a file from the command line
  2. read the file to memory
  3. convert it to an octet string using OCTET_STRING_fromBuf()
  4. encode it to an ASN.1 structure using uper_encode_to_new_buffer(), after asn_check_constraints() succeeds
  5. save the encoded data to a file for debugging (same folder as the original file)
  6. decode the buffer from memory using uper_decode()
  7. save the decoded data to a file (same folder as the original file)

Methodology

To create/view the bug use this ASN1 data structure as input to the asn1c compiler:

ImagesModule DEFINITIONS ::= BEGIN

 Image ::= SEQUENCE
 {
  data OCTET STRING SIZE (40..81920)
 }

END

To hide the bug, use:

ImagesModule DEFINITIONS ::= BEGIN

 Image ::= SEQUENCE
 {
  data OCTET STRING SIZE (0..81920)
 }

END

The only difference between the two versions is the use of a lower limit constraint on the size of the OCTET string.

Compilation command for asn1c

From folder asn1c_image/asn1 we used the following command:

/home/developer/asn1c/asn1c/asn1c -pdu=auto -S /home/developer/asn1c/skeletons/ -fcompound-names -gen-PER ../images.asn1

Version of asn1c

'ASN.1 Compiler, v0.9.28'

Samples

Inside the archive, there are two files [test_01.png, bad_data.bin].

  • test_01.png is larger than 80K so it should always fail.
  • bad_data.bin fails only when there is a lower bound limit on the size

asn1c_image - Full example - Demonstrating Bug (99 downloads)


3GPP Specification #: 25.331 version 14.1.0 – ASN.1 code

Reference: 25.331
Version: 14.1.0
Title: Radio Resource Control (RRC); Protocol specification
Status: Under change control
Type: ASN.1 code for Technical specification (TS)
Initial Planned Release: Release 1999
Radio Technology: 3G
Website: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1180
Download ASN.1 File: 3GPP Specification #: 25.331 version 14.1.0 - ASN.1 code (compressed) (37 downloads)


asn1c: Full working example of ASN.1 in C/C++

The following project demonstrates a full working example of encoding and decoding ASN.1 structures using the asn1c compiler of http://lionet.info/asn1c/

In this project we assumed that we have to encode a set of geometric elements, including:

  • A rectangle that is composed by its height and its width
  • A rectangular cuboid that it is composed by a rectangle and a depth parameter
  • A list of rectangular cuboids that has no limit on how many elements to add to it
  • A list of rectangular cuboids that must have at least one element and at most three
  • We assume that all parameters should be positive integer values

ASN.1 C Full Example (compressed) (111 downloads)

Following is our ASN.1 syntax to describe the above elements:

Geometry.asn1

GeometryModule DEFINITIONS ::= BEGIN

Rectangle ::= SEQUENCE {
    height INTEGER (0..MAX),
    width INTEGER (0..MAX)
}

RectangularCuboid ::= SEQUENCE {
    depth INTEGER (0..MAX),
    rectangle Rectangle
}

UnlimitedRectangularCuboids ::= SEQUENCE OF RectangularCuboid

LimitedRectangularCuboids ::= SEQUENCE SIZE(1..3) OF RectangularCuboid

END

Inside the directory where our source is located, we created folder called geometryASN.
From that folder we executed the following command to generate the c code that is needed for our C/C++ source code to operate:

asn1c -fcompound-names -gen-PER ../Geometry.asn1

Following is our C source code that creates new ANS.1 elements, encodes them, decodes them and verifies that all limitations and constraints were met.

ASN.1 C Full Example (compressed) (111 downloads)

main.cpp

//From the folder geometryASN, to convert the ASN1 to c execute the following
// asn1c -fcompound-names -gen-PER ../Geometry.asn1
#include <iostream>
#include "geometryASN/Rectangle.h"
#include "geometryASN/RectangularCuboid.h"
#include "geometryASN/LimitedRectangularCuboids.h"
#include "geometryASN/UnlimitedRectangularCuboids.h"

bool validate_constraints(asn_TYPE_descriptor_t *type_descriptor, const void *struct_ptr) {

  char error_buffer[128];
  size_t error_length = sizeof(error_buffer);
  const int return_value = asn_check_constraints(type_descriptor, struct_ptr, error_buffer, &error_length);

  if (return_value) {
    perror("asn_check_constraints() failed");
  }
  return (return_value == 0);
}

void *encode_and_decode_object(asn_TYPE_descriptor_t *type_descriptor, void *struct_ptr) {

  //First we validate that our object meets the expected constraints
  if (validate_constraints(type_descriptor, struct_ptr)) {
    void *buffer;
    asn_per_constraints_s *constraints = NULL;
    //Then, we encode the object to ASN.1 and assign the data to a buffer in memory
    const ssize_t ec = uper_encode_to_new_buffer(type_descriptor, constraints, struct_ptr, &buffer);
    if (ec == -1) {
      perror("uper_encode_to_new_buffer() failed");
    } else {
      //ASN.1 encoded object is not in the buffer variable and it is available for you to use.
      //Finally, since the encoding process went fine, we decode the data to verify with our own eyes that the process went smoothly
      void *decoded_object = 0;
      const asn_dec_rval_t rval = uper_decode(0, type_descriptor, &decoded_object, buffer, (size_t) ec, 0, 0);
      free(buffer);
      if (rval.code != RC_OK) {
        perror("uper_decode() failed");
        fprintf(stderr, "Broken encoding at byte %ld\n", rval.consumed);
      } else {
        return decoded_object;
      }
    }
  }
  return NULL;
}

int main(int argc, char *argv[]) {

  //Scenario A: We test basic encoding and decoding on a Rectangle.
  {
    //First we create a rectangle and then we encode it
    Rectangle_t *rectangle = (Rectangle_t *) calloc(1, sizeof(Rectangle_t));
    if (rectangle == NULL) {
      perror("calloc() failed");
      exit(EXIT_FAILURE);
    }
    rectangle->height = 10;
    rectangle->width = 150;

    Rectangle_t *decoded_rectangle = (Rectangle_t *) encode_and_decode_object(&asn_DEF_Rectangle, rectangle);

    if (decoded_rectangle != NULL) {
      if (rectangle->height != decoded_rectangle->height || rectangle->width != decoded_rectangle->width) {
        perror("uper_decode() failed. Wrong values found after decoding");
        ASN_STRUCT_FREE(asn_DEF_Rectangle, rectangle);
        ASN_STRUCT_FREE(asn_DEF_Rectangle, decoded_rectangle);
        exit(EXIT_FAILURE);
      }
    }
    ASN_STRUCT_FREE(asn_DEF_Rectangle, rectangle);
    ASN_STRUCT_FREE(asn_DEF_Rectangle, decoded_rectangle);
  }

  //Scenario B: We test basic encoding and decoding on a Rectangle.
  //We will provide a value that is out of the constraints area to force the test to fail.
  {
    //First we create a rectangle and then we encode it
    Rectangle_t *rectangle = (Rectangle_t *) calloc(1, sizeof(Rectangle_t));
    if (rectangle == NULL) {
      perror("calloc() failed");
      exit(EXIT_FAILURE);
    }
    rectangle->height = -10;
    rectangle->width = 150;

    Rectangle_t *decoded_rectangle = (Rectangle_t *) encode_and_decode_object(&asn_DEF_Rectangle, rectangle);

    if (decoded_rectangle != NULL) {
      perror("This test should have failed due to the constaint on the range of the valid values.");
      ASN_STRUCT_FREE(asn_DEF_Rectangle, rectangle);
      ASN_STRUCT_FREE(asn_DEF_Rectangle, decoded_rectangle);
      exit(EXIT_FAILURE);
    }
    ASN_STRUCT_FREE(asn_DEF_Rectangle, rectangle);
  }

  //Scenario C: We test basic encoding and decoding on a Rectangular Cuboid.
  {
    //First we create a rectangular cuboid and then we encode it
    RectangularCuboid_t *rectangular_cuboid = (RectangularCuboid_t *) calloc(1, sizeof(RectangularCuboid_t));
    if (rectangular_cuboid == NULL) {
      perror("calloc() failed");
      exit(EXIT_FAILURE);
    }
    rectangular_cuboid->depth = 27;
    rectangular_cuboid->rectangle.height = 10;
    rectangular_cuboid->rectangle.width = 150;

    RectangularCuboid_t *decoded_rectangular_cuboid = (RectangularCuboid_t *) encode_and_decode_object(
        &asn_DEF_RectangularCuboid, rectangular_cuboid);

    if (decoded_rectangular_cuboid != NULL) {
      if (rectangular_cuboid->rectangle.height != decoded_rectangular_cuboid->rectangle.height
          || rectangular_cuboid->rectangle.width != decoded_rectangular_cuboid->rectangle.width
          || rectangular_cuboid->depth != decoded_rectangular_cuboid->depth) {
        perror("uper_decode() failed. Wrong values found after decoding");
        ASN_STRUCT_FREE(asn_DEF_RectangularCuboid, rectangular_cuboid);
        ASN_STRUCT_FREE(asn_DEF_RectangularCuboid, decoded_rectangular_cuboid);
        exit(EXIT_FAILURE);
      }
    }
    ASN_STRUCT_FREE(asn_DEF_RectangularCuboid, rectangular_cuboid);
    ASN_STRUCT_FREE(asn_DEF_RectangularCuboid, decoded_rectangular_cuboid);
  }

  //Scenario D: We will create an array of elements that has no limitation on its size.
  {
    UnlimitedRectangularCuboids_t *unlimited_rectangular_cuboids = (UnlimitedRectangularCuboids_t *) calloc(1,
                                                                                                            sizeof(UnlimitedRectangularCuboids_t));
    if (unlimited_rectangular_cuboids == NULL) {
      perror("calloc() failed");
      exit(EXIT_FAILURE);
    }

    int i;
    for (i = 0; i < 10; i++) {       RectangularCuboid_t *tmp_rectangular_cuboid = (RectangularCuboid_t *) calloc(1, sizeof(RectangularCuboid_t));       if (tmp_rectangular_cuboid == NULL) {         perror("calloc() failed");         exit(EXIT_FAILURE);       }       tmp_rectangular_cuboid->depth = i;
      tmp_rectangular_cuboid->rectangle.height = i * 11;
      tmp_rectangular_cuboid->rectangle.width = i * 101;

      const int result = asn_set_add(unlimited_rectangular_cuboids, tmp_rectangular_cuboid);
      if (result != 0) {
        perror("asn_set_add() failed");
        ASN_STRUCT_FREE(asn_DEF_UnlimitedRectangularCuboids, unlimited_rectangular_cuboids);
        exit(EXIT_FAILURE);
      }
    }

    UnlimitedRectangularCuboids_t *decoded_unlimited_rectangular_cuboids = (UnlimitedRectangularCuboids_t *) encode_and_decode_object(
        &asn_DEF_UnlimitedRectangularCuboids, unlimited_rectangular_cuboids);

    if (decoded_unlimited_rectangular_cuboids != NULL) {
      for (i = 0; i < decoded_unlimited_rectangular_cuboids->list.count; i++) {
        RectangularCuboid_t *tmp_rectangular_cuboid = decoded_unlimited_rectangular_cuboids->list.array[i];
        if (tmp_rectangular_cuboid->rectangle.height != i * 11
            || tmp_rectangular_cuboid->rectangle.width != i * 101
            || tmp_rectangular_cuboid->depth != i) {
          perror("uper_decode() failed. Wrong values found after decoding");
          ASN_STRUCT_FREE(asn_DEF_UnlimitedRectangularCuboids, unlimited_rectangular_cuboids);
          ASN_STRUCT_FREE(asn_DEF_UnlimitedRectangularCuboids, decoded_unlimited_rectangular_cuboids);
          exit(EXIT_FAILURE);
        }
      }
    }
    ASN_STRUCT_FREE(asn_DEF_UnlimitedRectangularCuboids, unlimited_rectangular_cuboids);
    ASN_STRUCT_FREE(asn_DEF_UnlimitedRectangularCuboids, decoded_unlimited_rectangular_cuboids);
  }

  //Scenario E: We will create an array of elements that has a limitation on how many elements it can accept.
  //We will add more elements than expected and we expect the encoding to fail.
  {
    LimitedRectangularCuboids_t *limited_rectangular_cuboids = (LimitedRectangularCuboids_t *) calloc(1,
                                                                                                      sizeof(LimitedRectangularCuboids_t));
    if (limited_rectangular_cuboids == NULL) {
      perror("calloc() failed");
      exit(EXIT_FAILURE);
    }

    int i;
    for (i = 0; i < 10; i++) {       RectangularCuboid_t *tmp_rectangular_cuboid = (RectangularCuboid_t *) calloc(1, sizeof(RectangularCuboid_t));       if (tmp_rectangular_cuboid == NULL) {         perror("calloc() failed");         exit(EXIT_FAILURE);       }       tmp_rectangular_cuboid->depth = i;
      tmp_rectangular_cuboid->rectangle.height = i * 11;
      tmp_rectangular_cuboid->rectangle.width = i * 101;

      const int result = asn_set_add(limited_rectangular_cuboids, tmp_rectangular_cuboid);
      if (result != 0) {
        perror("asn_set_add() failed");
        ASN_STRUCT_FREE(asn_DEF_LimitedRectangularCuboids, limited_rectangular_cuboids);
        exit(EXIT_FAILURE);
      }
    }

    LimitedRectangularCuboids_t *decoded_limited_rectangular_cuboids = (LimitedRectangularCuboids_t *) encode_and_decode_object(
        &asn_DEF_LimitedRectangularCuboids, limited_rectangular_cuboids);

    if (decoded_limited_rectangular_cuboids != NULL) {
      perror("This test should have failed due to limitation on the size of the list.");
      ASN_STRUCT_FREE(asn_DEF_LimitedRectangularCuboids, limited_rectangular_cuboids);
      ASN_STRUCT_FREE(asn_DEF_LimitedRectangularCuboids, decoded_limited_rectangular_cuboids);
      exit(EXIT_FAILURE);
    }
    ASN_STRUCT_FREE(asn_DEF_LimitedRectangularCuboids, limited_rectangular_cuboids);
  }

  printf ("All tests were successful\n");
  return EXIT_SUCCESS;
}

ASN.1 C Full Example (compressed) (111 downloads)